Digital Transformation

Digital machinations: payback time

Key takeaways

• Digital transformation is driving real-world productivity gains. The implementation of digital strategies has the potential to reduce manufacturing costs by over 25% by improving labor productivity and cutting energy use, per BofA Global Research.

• At the same time, BofA Global Research sees increased demand for cloud-based capabilities such as cybersecurity, virtualization software and remote access. While demand remains robust, there is still plenty of opportunity to adopt automated and digital solutions.

• As global supply chains shift and reshoring activity for US manufacturing surges in the post-COVID recovery, companies are likely to continue to increase their investment in automation to manage costs, inventory and complexity.

Digital transformation drives real-world productivity gains

Return on investment (ROI) is a key metric for corporate decision-makers. For real-world data on the benefits of digital transformation investments, BofA Global Research looked at the World Economic Forum’s (WEF) Global Lighthouse Network. This is a collection of 132 factories across a diverse set of industries. The impact of digital transformation in these facilities has reduced manufacturing costs by approximately 26%, labor costs by around 32%, and energy use by roughly 24%, while increasing productivity by over 50% (Exhibit 1). Ultimately, this translates into improved profit for the company and, hence, a higher return on investment.

Exhibit 1: Impact of digital transformation & Industry 4.0 analysis (%)

Energy, labor & manufacturing cost reductions of 24-32% have been achieved across the WEF Lighthouse Network.

Source: World Economic Forum Global Lighthouse Network
Note: Lighthouses are the factories that have decided to implement at scale 4th Industrial Revolution technology

Are the robots taking over?

According to the 2019 Annual Business Survey (US Census), adoption rates for representative automation technologies remain relatively low, with less than 11% of US plants using industrial robots (Exhibit 2). While not a perfect representation of the state of factory automation given the growth in digitalization capabilities over the past few years, these low adoption rates suggest there is still plenty of “white space” left in developed markets such as the US.
Exhibit 2: Robot adoption among selected US manufacturing industries
Only one in nine US manufacturing plants had adopted robots according to 2019 survey

![Robot adoption among selected US manufacturing industries](chart)

However, according to BofA Global Research, robotics demand in 2022 should have increased by about 13% year-over-year (YoY) to around 584,000 units and the 2023 installed base should grow by around 10.5%, similar to what was seen in 2020.

Exacerbated by wage increases and worker shortages, global installations of industrial robots started to rise in 2021 (Exhibit 3), with further growth expected in 2022-25E per International Federation of Robotics (IFR). Similarly, the collaborative robot (or “cobot”) market accelerated to ~50% YoY growth in 2021, from ~25% in 2020 (Exhibit 4).

Floating in the industrial cloud
BofA Global Research believes that working from home will continue to have far-reaching effects for the industrial world, as well as the more office-bound professions. For the first time, many factory-based supply chain systems and working practices were forced into the cloud and off-premises by lockdowns.

In fact, according to BofA Global Research, close to 50% of the global workload is expected to be cloud-based in three years’ time (from 42% today). The platforms offered by cloud vendors offer a place for smaller, independent companies to develop their offerings. Growth is complemented by the portfolio capabilities the cloud vendors bring to the table such as cybersecurity, virtualization software and remote access.

Industrial software: an area of considerable growth
The more generic tools and Internet of Things (IoT) platform software appear to offer the fastest growth as enterprise software firms expand their offerings to the industrial world. This is most apparent in cloud infrastructure and the ongoing shift in control, processing power and analysis to the machine level or edge, as well as in the growth in data and analytics run on the cloud. BofA Global Research and IoT estimates the industrial software market could be worth over $250 billion in annual sales by 2027 (Exhibit 5).
Exhibit 5: Operational Tech and Industrial Software market, according to IoT Analytics ($, billions)
The compound annual growth rates are 3% for the Operational Tech market and 18% for industrial software from 2021-27E

Source: Internet of Things (IoT) Analytics, Dec 2021

Software-as-a-service models reduce up-front costs of adoption
Many vendors are now transitioning to software-as-a-service (SaaS). Under the SaaS subscription model, clients pay a monthly subscription fee to use the software, which differs markedly from the perpetual licensing model with a significant one-off purchase of a license at the inception of the contract. With reduced up-front capital costs and greater flexibility for customers old and new, the SaaS model is driving faster adoption rates. In the case of economic recession, subscription cancellations are less likely than postponement of license renewals.

Increased reshoring activity leads to automation demand
For the first time since the 1970s, US industrial production, manufacturing employment, and capital expenditures have all exceeded prior peaks. In 2021, jobs tied to reshoring activity also surged to a record high, reaching nearly 180,000 (Exhibit 6). Reshoring is on track to add 1.5% to US manufacturing employment in 2022, according to the Reshoring Initiative.

How does this translate into automation demand? Automation has seen strong demand in the post-COVID recovery, with shifting supply chain trends and US reshoring activity being key factors. Despite demand remaining robust, there is still plenty of opportunity to adopt automated and digital solutions. These solutions lead to energy-efficiency improvements by giving companies access to improved business data. Such data is necessary to monitor and quantify energy needs, predict shortages and faulty machines, reduce costs, and optimize overall systems.
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor Bowley</td>
<td>Economist</td>
<td>Bank of America Institute</td>
</tr>
<tr>
<td>Vanessa Cook</td>
<td>Content Strategist</td>
<td>Bank of America Institute</td>
</tr>
</tbody>
</table>

Sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Obin</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
<tr>
<td>Alexander Virgo</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
<tr>
<td>David Ridley-Lane, CFA</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
<tr>
<td>Kenjin Hotta</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
<tr>
<td>Frederic Boulan, CFA</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
<tr>
<td>George Featherstone, CFA</td>
<td>Research Analyst</td>
<td>BofA Global Research</td>
</tr>
</tbody>
</table>
Disclosures

These materials have been prepared by Bank of America Institute and are provided to you for general information purposes only. To the extent these materials reference Bank of America data, such materials are not intended to be reflective or indicative of, and should not be relied upon as, the results of operations, financial conditions or performance of Bank of America. Bank of America Institute is a think tank dedicated to uncovering powerful insights that move business and society forward. Drawing on data and resources from across the bank and the world, the Institute delivers important, original perspectives on the economy, Environmental, Social and Governance (ESG) and global transformation. Unless otherwise specifically stated, any views or opinions expressed herein are solely those of Bank of America Institute and any individual authors listed, and are not the product of the BofA Global Research department or any other department of Bank of America Corporation or its affiliates and/or subsidiaries (collectively Bank of America). The views in these materials may differ from the views and opinions expressed by the BofA Global Research department or other departments or divisions of Bank of America. Information has been obtained from sources believed to be reliable, but Bank of America does not warrant its completeness or accuracy. Views and estimates constitute our judgment as of the date of these materials and are subject to change without notice. The views expressed herein should not be construed as individual investment advice for any particular client and are not intended as recommendations of particular securities, financial instruments, strategies or banking services for a particular client. This material does not constitute an offer or an invitation by or on behalf of Bank of America to any person to buy or sell any security or financial instrument or engage in any banking service. Nothing in these materials constitutes investment, legal, accounting or tax advice.

Copyright 2023 Bank of America Corporation. All rights reserved.